On the Relation between the Non-commuting Graph and the Prime Graph
نویسندگان
چکیده
Given a non-abelian finite group G, let π(G) denote the set of prime divisors of the order of G and denote by Z(G) the center of G. The prime graph of G is the graph with vertex set π(G) where two distinct primes p and q are joined by an edge if and only if G contains an element of order pq and the non-commuting graph of G is the graph with the vertex set G−Z(G) where two non-central elements x and y are joined by an edge if and only if xy 6= yx. Let G and H be non-abelian finite groups with isomorphic non-commuting graphs. In this article, we show that if |Z(G)| = |Z(H)|, then G and H have the same prime graphs and also, the set of orders of the maximal abelian subgroups of G and H are the same.
منابع مشابه
On the commuting graph of some non-commutative rings with unity
Let $R$ be a non-commutative ring with unity. The commuting graph of $R$ denoted by $Gamma(R)$, is a graph with a vertex set $Rsetminus Z(R)$ and two vertices $a$ and $b$ are adjacent if and only if $ab=ba$. In this paper, we investigate non-commutative rings with unity of order $p^n$ where $p$ is prime and $n in lbrace 4,5 rbrace$. It is shown that, $Gamma(R)$ is the disjoint ...
متن کاملThe graph of equivalence classes and Isoclinism of groups
Let $G$ be a non-abelian group and let $Gamma(G)$ be the non-commuting graph of $G$. In this paper we define an equivalence relation $sim$ on the set of $V(Gamma(G))=Gsetminus Z(G)$ by taking $xsim y$ if and only if $N(x)=N(y)$, where $ N(x)={uin G | x textrm{ and } u textrm{ are adjacent in }Gamma(G)}$ is the open neighborhood of $x$ in $Gamma(G)$. We introduce a new graph determined ...
متن کاملOn the commuting graph of non-commutative rings of order $p^nq$
Let $R$ be a non-commutative ring with unity. The commuting graph of $R$ denoted by $Gamma(R)$, is a graph with vertex set $RZ(R)$ and two vertices $a$ and $b$ are adjacent iff $ab=ba$. In this paper, we consider the commuting graph of non-commutative rings of order pq and $p^2q$ with Z(R) = 0 and non-commutative rings with unity of order $p^3q$. It is proved that $C_R(a)$ is a commutative ring...
متن کاملON THE GROUPS WITH THE PARTICULAR NON-COMMUTING GRAPHS
Let $G$ be a non-abelian finite group. In this paper, we prove that $Gamma(G)$ is $K_4$-free if and only if $G cong A times P$, where $A$ is an abelian group, $P$ is a $2$-group and $G/Z(G) cong mathbb{ Z}_2 times mathbb{Z}_2$. Also, we show that $Gamma(G)$ is $K_{1,3}$-free if and only if $G cong {mathbb{S}}_3,~D_8$ or $Q_8$.
متن کاملON THE SZEGED INDEX OF NON-COMMUTATIVE GRAPH OF GENERAL LINEAR GROUP
Let $G$ be a non-abelian group and let $Z(G)$ be the center of $G$. Associate with $G$ there is agraph $Gamma_G$ as follows: Take $Gsetminus Z(G)$ as vertices of$Gamma_G$ and joint two distinct vertices $x$ and $y$ whenever$yxneq yx$. $Gamma_G$ is called the non-commuting graph of $G$. In recent years many interesting works have been done in non-commutative graph of groups. Computing the clique...
متن کاملA Kind of Non-commuting Graph of Finite Groups
Let g be a fixed element of a finite group G. We introduce the g-noncommuting graph of G whose vertex set is whole elements of the group G and two vertices x,y are adjacent whenever [x,y] g and [y,x] g. We denote this graph by . In this paper, we present some graph theoretical properties of g-noncommuting graph. Specially, we investigate about its planarity and regularity, its clique number a...
متن کامل